Assessment of Customer Credit through Combined Clustering of Artificial Neural Networks, Genetics Algorithm and Bayesian Probabilities
نویسندگان
چکیده
Today, with respect to the increasing growth of demand to get credit from the customers of banks and finance and credit institutions, using an effective and efficient method to decrease the risk of non-repayment of credit given is very necessary. Assessment of customers' credit is one of the most important and the most essential duties of banks and institutions, and if an error occurs in this field, it would leads to the great losses for banks and institutions. Thus, using the predicting computer systems has been significantly progressed in recent decades. The data that are provided to the credit institutions' managers help them to make a straight decision for giving the credit or not-giving it. In this paper, we will assess the customer credit through a combined classification using artificial neural networks, genetics algorithm and Bayesian probabilities simultaneously, and the results obtained from three methods mentioned above would be used to achieve an appropriate and final result. We use the K_folds cross validation test in order to assess the method and finally, we compare the proposed method with the methods such as Clustering-Launched Classification (CLC), Support Vector Machine (SVM) as well as GA+SVM where the genetics algorithm has been used to improve them. KeywordsData classification; Combined Clustring; Artificial Neural Networks; Genetics Algorithm; Bayyesian Probabilities.
منابع مشابه
The Application of Combined Fuzzy Clustering Model and Neural Networks to Measure Valuably of Bank Customers
Currently, acquisition of resources in banks is subject to attraction of the resources of banking customers. Meanwhile, the Bank’s valuable customers are one of the best resources to make profit for banks. Several different models are introduced for evaluation of profitability of the customers; but most of them are classical models and they are unable to evaluate the customers in complete and o...
متن کاملThe Application of Combined Fuzzy Clustering Model and Neural Networks to Measure Valuably of Bank Customers
Currently, acquisition of resources in banks is subject to attraction of the resources of banking customers. Meanwhile, the Bank’s valuable customers are one of the best resources to make profit for banks. Several different models are introduced for evaluation of profitability of the customers; but most of them are classical models and they are unable to evaluate the customers in complete and o...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.7740 شماره
صفحات -
تاریخ انتشار 2013